O.P.Code:23HS0840

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS) B. Tech I Year II Semester Supplementary Examinations December-2025 ENGINEERING PHYSICS

		(Common to CE, ME, CAD, CSM, CCC, CIC, CAI)			
Tim	e:	3 Hours	Max.	Marl	s: 70
		PART-A	25		
		(Answer all the Questions $10 \times 2 = 20 \text{ Marks}$)			
1		Define Diffraction.	CO1	L1	2M
	b	Define Resolving Power of Grating.	CO1	L1	2M
	c	Define Bragg's condition for X-Ray diffraction.	CO ₂	L1	2M
	d	Define lattice parameter?	CO2	L1	2M
177	e	What is Bohr magnetron?	CO4	L1	2M
	f	What is hysteresis?	CO4	L1	2M
	g	Define mean free path.	CO ₅	L1	2M
	h	What is Fermi energy level?	CO5	L1	2M
	i	What is Drift and Diffusion in semiconductors.	CO6	L1	2M
	j	What is extrinsic semiconductor?	CO6	L1	2M
		PART-B			
		(Answer all Five Units $5 \times 10 = 50$ Marks)			
		UNIT-1			2 140
2	a	Distinguish between Fraunhofer and Fresnel's diffraction.	CO1	L3	5M
	b	Compare Interference and Diffraction.	CO1	L2	5M
		OR			
3	a	Explain the production of plane polarized light using Nicol Prism.	CO1	L2	.5M
	b	Describe the propagation of polarized light in Quarter -Wave plate.	CO1	L3	5M
		UNIT-II			
4	a	Explain the various types of Bravais lattices with a neat sketch.	CO2	L2	4M-
		Define atomic packing fraction and derive it for simple cubic crystal		L3	6M
		structure.		20	01.12
		OR			
5	a	Explain how crystal structure determined by Powder X-Ray diffraction	CO2	L2	5M
		method.			0.1.2
	b'	What are the advantages of Powder X-Ray diffraction method?	CO2	L1	5M
		UNIT-III			
6	a	Obtain Clausius-Mosotti equation and explain how it can be used to	CO4	14	. 5M
		determine the dipole moment of a polar molecule.	004	LT	3141
	b	A solid elemental dielectric with 3×10^{28} atoms/ m ³ shows an electronic	CO4	L1	-5M
		polarisability of 10 ⁻⁴⁰ F-m ² assuming the internal electric field to be a	COA	L/I	5171
		Lorenz field. Calculate a dielectric constant of the material.			2
		OR			
7	a	Explain the domain concept of ferromagnetism.	CO4	L4	7M
		A paramagnetic material has a magnetic field intensity of 10 ⁴ A/m. If the	CO4	L1	3M
		susceptibility of the material at room temperature is 3.7×10^{-3} . Calculate			-111
		the magnetization and flux density in the material.		53	

UNIT-IV

8	·a	Derive Schrödinger's time independent wave equation.	CO ₅	L3	
	b	Explain the physical significance of wave function.	CO ₅	L2	
		OR			
9	a	What are the advantages of quantum free electron theory over classical	CO ₅	L1	
		free electron theory?			
	b	Derive an expression for electrical conductivity in a metal by quantum	CO ₅	L3	
		free electron theory.			
		UNIT-V			
10	a	What is Fermi level? Prove that the Fermi level is lies exactly in between	CO6	L3	
		conduction band and valance band of intrinsic semiconductor.			
	b	If RH of a specimen is $3.66 \times 10^{-4} \mathrm{m}^3 \mathrm{c}^{-1}$. Its resistivity is $8.93 \times 10^{-3} \Omega$ -	CO6	L2	
		m. Find mobility and electron concentration.			
		OR			
11	a	Describe the Hall Effect in semiconductors.	CO6	L2	
	b	What are the applications of Hall Effect?	CO6	L1	
		*** END ***			